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Finite-size effects and infrared asymptotics of the correlation 
functions in two dimensions 
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Abstract. The finite-size corrections approach to the calculation of the asymptotics of 
correlatic n functions containing the oscillating terms in the asymptotics in ( 1 + 
I )-dimensional theories is presented. Explicit formulae for the critical exponents in 
integrable models are  obtained. 

1. Introduction 

Phase transitions in quantum models in two spacetime dimensions take place only at 
zero temperature. This means that the exponential form of the  long distance asymptotics 
of correlation functions changes for the power form. These systems have a gapless 
excitation spectrum with a linear dispersion law in the vicinity of the Fermi level. 
Their critical behaviour is described by conformal field theory [ l ,  21 which is 
parametrised by the central charge e in the Virasoro algebra satisfied by the energy- 
momentum tensor. For e < 1 a discrete set of values of c is allowed by unitarity 
[3]: c = 1 - 6 / m (  m + 1 )  ( m  2 2 an integer) and the scaling dimensions are known exactly 
[2]. When c 2 1 the critical exponents may continuously depend on the parameters 
of the model [4]. To obtain the complete information about the critical behaviour of 
the system one has to determine the central charge and the conformal dimensions A, 
a of the primary fields [ l ,  21. These quantities can be calculated from the leading 
finite-size corrections to the ground and the excited energies of the system [ 1, 51. 

Let us consider the system in a periodic box of length L. Let E: be the energy of 
the ground state 10) and E ?  the minimal energy of the excited state Id) with the 
non-vanishing form factor (014(0)14) f 0. Suppose that in the limit L -+ K) one has 

E':= L f , , - ( l r c / 6 ~ ) / L + O ( l / L ~ )  ( 1 )  

Here P? is the momentum of the state 14) and U is the Fermi velocity. Then the 
leading term of the long distance asymptotics of the correlation function is of the 
following conformal form: 

( 4  ( z ,  i )  4 (0,O)) = ( 4  (0,O))' + A /  ( z 2 A ~ i 2 i ~ ~ )  (4) 
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where A, = ( 6 ,  + s,)/2, 
here is 

= (8, - s,)/2 and z = vT + ix, Z = v7 - ix. The amplitude 

A = lim { ( T / L ) - ~ ' ~  exp(i.rrs,)I(OI4(O)I~}1*}. 
L - x  

This means that for I z I - * c o  the operator 4 ( z ,  Z) is a conformal one with conformal 
dimension A,, a,. 

The central charge in the Virasoro algebra may also be calculated from the low- 
temperature expansion of the bulk free energy [6,7]: 

f (  T )  = f o -  ( T C / ~ U )  T 2 + O (  T 2 )  (5) 

where T is the temperature. 
The generalisation of the finite-size corrections approach to the calculation of the 

asymptotics of correlation functions containing oscillating terms in the asymptotics is 
presented below. This paper is an extended version of a previous paper of ours [8]. 
In 0 2 the general description of the leading terms of the asymptotics is given. Explicit 
formulae for the critical exponents in integrable models are obtained. As an  example, 
the one-dimensional Bose gas and the X X Z  Heisenberg antiferromagnetic chain are 
considered in P 3. 

2. Finite-size effects 

Generally, the leading term of the correlation function asymptotics can oscillate, so 
the asymptotics is not always conformal. The reason is that the large distance 
asymptotics of the correlation functions is determined by processes of two kinds in 
the intermediate states (we consider the one-dimensional models). The processes of 
the first kind are transitions in the neighbourhood of the Fermi level: *kF+ *kF, p = 0. 
Here p is the momentum of elementary excitation. The processes of the second kind 
are transitions from one Fermi level to another one: *kF+ F k , ,  p = k 2 k F .  

Thus we have [9-111 

The first and  the second terms on the right-hand side are due to processes of the first 
and the second kind, respectively. I f  Bo < e l ,  then the first non-oscillating term in the 
asymptotics is the leading one. If eo> 8 , ,  then the second term prevails and the 
asymptotics oscillates. 

Equation (6) describes the equal-time correlation function and  can be interpreted 
in the following way. For x + m  the field 4 can be decomposed into the sum of 
conformal fields which are responsible for the power asymptotics. Consider fields with 
the following expansion: 

4 ( z ,  Z)=C$~(Z, Z)+J0(z, ~ ) + ~ , ( ~ , ~ ) e x p ( i k ~ x ) + ~ - ~ ( z ,  Z) exp(-ikFx). (7) 

The fields &, 6, and 4+, are conformal fields. The oscillations in (7) are due  to 
macroscopic gaps in the momentum operator spectrum for processes of the second 
kind ( p  = k2kF).  
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The general form of the time-dependent correlation function asymptotics which 
corresponds to equation (7) is 

We require that the conformal dimensions of the fields 4’, 4-’ are the same and that 
the following orthogonality holds: 

(4060) = (414-1) = (404*’) = (604*1) = 0. 
Extending the methods of [5] we can deduce the scaling dimensions in (3) from 

the finite-size effects. The correlation function in the periodic strip of width L (k; ’  << x << 
L )  is found with the use of the conformal transformation w = ( L / 2 7 r )  log z of the 
infinite plane result (8) (the variable x in the cosine remains unchanged): 

(445 a 4 ( o , o ) ) L  

A( 7 r / L ) 2 ( d + 4 )  B(.rr/ L)2(A2+LJ cos(2k,x) + - +  
[sinh(P~/L)]2b”[Sinh(~Z/L)]2dn [ s i n h ( . r r ~ / L ) ] ~ ~ ~ [ s i n h ( . r r i / L ) ] ~ ~ ~  * 

(9) 

(10) 

It can also be represented as a sum over the intermediate states: 

( 4 ( z ,  W 4 0 ,  0 ) ) ~  = E  I(ol4(0, o)b)12 exp[-T(E;- E21 -ixP21. 
n 

Here E: is the energy of the ground state, E?,  P2 are the energy and momentum of 
the intermediate states and z = UT + ix, P = UT - ix. 

Comparing (9) and (10) at 7, L going to infinity we obtain the relation between 
the scaling dimensions A in (9) and the finite-size asymptotics of the low lying levels 
E “. Decomposition ( 7 )  corresponds to the approximation where the contributions of 
just the four lowest energy levels E’, E’, E3, E4 with form factors ( O l 4 ( O , O ) l n ) # O  
( n  = 0,1, . . . , 4 )  are considered: 

E:- EO,=(~TU/L)BO P: = (27r/L)fo (11) 

E : -  E:= (2n-u/L)eo P: = (27r/L)f0 (12) 
E t -  EO,=(2m/L)8 ,  P-:=(27r/L)s1+2k, (13) 

E:- E:=(27ru/L)B1 P: = (2n-/L)s1 -2k,. (14) 

The coefficients A, A and B in (9) are expressed in terms of corresponding form factors: 

A = lim {(7r/L)-20~exp(i7rso) ~ ( 0 ~ 4 ~ 1 ) ~ 2 }  

A’ = lim { ( n - / ~ ) - ~ @ i l  exp(in-f0)l(ol4l2)IZ) 

B = lim { 2 ( ~ r / L ) - ~ ~ ~  exp(im,)l(Ol~l3)1’}. 

L-W 

L’W 

L-CC 

The conformal dimensions are obtained from 8 and s as follows: 
-1 

-1 

-1 

0 - 2 ( @ 0 - s 0 )  

o - - 2 ( e O - ~ o )  

1 - 2 ( 0 ’  - SI) .  

A -1 o - * ( ~ o + ~ o )  

0 - 2  ( 8 o + f o )  

I - 2 (01 + SI)  

- 
-1 

A -1 
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3. Bethe ansatz solvable models 

Let us turn now to the completely integrable models [12]. In  this case equations 
(11)-(14) allow us to calculate the critical exponents exactly. We shall consider the 
one-dimensional Bose gas with 8-function interaction and X X Z  Heisenberg antifer- 
romagnet chain. The corresponding Hamiltonians are 

HBC= (a,J,'a,J,+xxtl/*cL*J,J,-hJ,+c9) dx x > O ,  h > O  1,: 
L 

H xyxz = 1 ( u 1 (T :> + + c7 t u:, * , + CO s 2 77 u u :, + , + ; hu : 1 
0 ~ I 

0 < 277 < T ,  0 < h < 4( 1 - COS 277) 

where h is the chemical potential for the Bose gas and the external magnetic field for 
the X X Z  magnet and x ,  77 are the corresponding coupling constants. It should be 
mentioned that the finite-size corrections for the X X Z  chain in zero magnetic field 
has been considered in [13, 141. 

These models are solved by means of the Bethe ansatz. The N-particle wavefunction 
is parametrised by N numbers A which satisfy the equation [15, 161 

\ 

Lpo( A ,  1 = 2 - C @( A /  - A,,, ).  
tn = I 
n, f / 

Here p,, is a bare momentum and Q, is a bare scattering phase: 

(16) 

cosh(A - i q )  
cosh(A + i q )  

p:"( A ) = A 

Q ' ~ ( A )  = - T + i  log 

p t x z (  A ) = i log 

(sinh(A +2i77)) 
sinh(A -2i77) 

@ t x z ( A )  = -r+i log 

The numbers I, are integer if N is odd and half integer if N is even 
The bare energy of each particle is 

:c; = A - h F ; X Z  = h -2sin2277/cosh(A + i v )  cosh(/\ - i v ) .  

The eigenvalue of the Hamiltonian is equal to the sum of the bare energies of the 
particles: 

The total momentum is equal to 
N 

pL= 2 P d A j ) .  
j = l  

Taking the sum of all the equations in  (16) we find that 
N 

L P L = 2 T  c Ij 
j = l  

(we have used the fact that @ ( - A )  = - @ ( A ) ) .  

(18) 
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The ground states of the models are constructed by filling the Fermi sphere with 
N elementary particles having negative energies. The Fermi momentum k ,  = n-N/ L 
n-p. In  the thermodynamic limit ( L ,  N - E )  the density p is finite. 

Consider the particles in the centre-of-mass system, i.e. P I .  Equation (19) then 
implies X I ,  = 0. I f  we regard p as the function of h, then the ground state is defined 
by the following equations [ 171: 

K (  A ) = d@( A ) / a h .  

The parameter .I is defined by the requirement that & ( . \ ) = O ;  p ( A )  is the distribution 
function ( p (  A , )  = [ L( A / +  I - A , ) ] - ' )  of the particles in the Dirac sea with momentum 
p ( A ) :  

p ( A ) = p i ~ ( h ) +  @ ( A ,  P ) P ( P )  d/L. I-\\ 
It is easy to verify that p ' ( A  ) = 2 x p ( A )  and p (  1) = k F .  

The density p is equal to 

p =  1 \ p ( A )  dh 

and the energy of the ground state is 

( 2 2 )  

(23)  

Elementary excitations over the ground state are constructed by the 'particles' with 
momenta IpI > kF(  IA 1 > I) and by the 'hole' lp l<  kF(lAl < 1). The energy of the excited 
state is 

e(A)  = / & ( A  ) I .  
In  the vicinity of Fermi level k F  one has 

e ( A ) =  t ' ip(A)-kF;  

where U is the Fermi velocity, U = €'( ,I) /p'(  2) .  
It follows from the low-temperature expansion of the bulk free energy [ 14, 151 that 

c = 1 for the models considered. 
First we examine the case G f  'uncharged' operators: the current operator 4(x, 7 )  = 

j ( x ,  T )  = 4+(x,  T ) $ ( x ,  7) for the Bose gas and the operator of the third spin component 
4 ( a ,  T )  = rb(~)  for the X X Z  chain. In this case the number of the excited particles 
and holes is the same. For large L there are four intermediate states with lowest energy 
levels. Two of them, Il), 12), belong to excitations of the first kind-the particle and 
the hole on the same Fermi level. The excitations of the second kind, 13), 14), are for 
particles and  holes on opposite Fermi levels. 
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To construct excitations of the first kind we must put I N  --* I N  + 1 or  I ,  --* I ,  - 1 into 
( 1 6 )  while the other Z, are left unchanged. The momentum of the pair particle-hole 
(see ( 1 9 ) )  is 

P:.' = * 2 T /  L. ( 2 5 )  

It follows from ( 1 1 )  and ( 1 2 )  that so= 1 ,  lo= - 1 .  The energy difference is 
E k 2 - E o  L - - & ( A p )  - & ( A h )  = &'(A)(  A ,  - A h ) .  

Writing 

p:.' = P ( A , )  - P ( A h )  =p'(A)(Ap-  A h )  

and taking into account ( 2 5 )  we thus obtain 

E k 2 - E O , = 2 r u / L  B o =  1 .  ( 2 6 )  

The excitation of the second kind can be regarded as the transition of the Fermi 
sphere: *A + * A +  6(*A + &A - 6) .  To obtain such excitations we must change I ,  in 
( 1 6 )  by writing Z i  = I, * 1 .  Subtracting ( 1 6 )  from the Bethe equation with the new I :  
we find with accuracy l / L 2  that 

1 Z(A) 6=- -  
L P ( A ) ,  

Here 2 is the 'dressed charge' function [19 ] :  

Z ( h )  = 1 +L l4 K ( h ,  p ) Z ( p )  dp .  
2 7  - A  

This function has the simple physical sense Z(A) = d e ( A ) / d h .  The momenta of these 
states are 

and the energies are 

Here E ~ . . " ( A )  are defined (with accuracy O ( S 3 ) )  by the equations 

and can be expressed in the following way: 

where u ( A )  is the antisymmetric function 

and  the function F is defined by 
f A  
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Substituting (32) into (30) and using the relation 

2 f l ~ ( h  1 = ~ b ( h  1 + 5 ' P ~ ( c L ) F ( P ~  1 d p  
- \  

we obtain 

2fl - E:.'= - ' ~ ~ . ' ( h ) p b ( A )  dh  + s * ~ ' ( A ) p b ( A )  
L - \  

= ( 2 n /  L)E:+ 8 2 2 ~ ~ ' ( A ) p ( A ) .  

Clearly 

E 2' - E: = ( ~ T v /  L)Z ' (  A ) .  (33) 

From (11)-(14), (25), (26),  (29) and (33) one obtains the following expression for the 
time-dependent correlation function of currents: 

The currents are the Hermitian operators and therefore A = A, B = B. The critical 
exponent is equal to 

20, = 2 Z 2 ( A ) .  (34') 

This is just the formula for the critical exponent originally obtained in [20]. 
Let us now consider the correlation function of the 'charged' fields, i.e. 4 = $' for 

the Bose gas and CT+ for the X X Z  chain. The vacuum in both models is uncharged. 
This means that the correlations (44) and ( I # J * ~ * )  are identically zero. Taking charge 
conjugation of correlators we obtain that conformal spins of the fields 4 are equal to 
zero and 

( (b*(z ,  Z)4(0,0))= C/ lz /2H+ .  (35) 
The oscillating term in the correlator of two charged fields is less than the non-oscillating 
one in any case and so it is not written above. To calculate A in the models under 
consideration we again use the finite-size correction approach. 

The lowest energy excited state created by the operator 4 is the ground state of 
the Hamiltonian corresponding to N + 1 particles. This state possesses zero momentum: 

Pf = 0. (36) 
One can easily calculate the energy difference in terms of the magnetic susceptibility: 

1 ah 
E:  - E ;  = ~ [ f , ( p  + I / L )  - h / ~  -fo( p ) ]  = - - 

2~ ap (37) 

(see also [13] for h = O ) .  Here fo is the free energy at zero temperature. It follows 
from (36) and (37)  that the value of the critical exponent 8, in (35) is 

1 ah 0 =--, 
+ 4TV ap 

One can show, using integral equations (20) and (21), that the following relation is 
valid [21]: 

ah TU - 
a p  Z*(A)'  (39) 
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It results in the following simple relation between the critical exponents O+ and 0, :  

20, = 1/20 , .  (40) 

Thus the hypothesis of [20] is proved. 
It should be mentioned that the critical exponents in the X X Z  model depend 

essentially on the magnetic field (this dependence was described in detail in [21]). At 
zero magnetic field the critical exponents can be calculated explicitly: 

0 ,  = 7 / 4 7 .  (41) 

This value coincides with the results of [lo]. 

4. Conclusions 

We have studied the infrared asymptotics of some correlators in the X X Z  and non-linear 
Schrodinger models using the finite-size corrections approach. It is shown that this 
method can also be applied to obtain oscillating terms in the asymptotics. 

We have considered the case of the integrable models. It is, however, evident that 
equation (38) for 8, and the form of the first two terms of the asymptotics (34) d o  
not depend on the integrability of the system. Using the Landau theory of Fermi 
liquids one can show that expression (34’) for 0, is universal and that equation (40) 
is valid for any (1 + 1)  model with c = 1 in the corresponding conformal theory. 
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Nore added  i n  pro<</. .4rbitrary lob-lying excitations are the linear combinations of the states described 
above (see ( 3 4 )  and ( 3 5 ) ) .  Hence for the spectrum of the conformal dimensions we have 

A ,,,,,,, I = i ny - my- I )’ + s n, m, T E Z I y = 2Z7.1)  

It must be mentioned that the following anisotropy parameter is usually used for the XXZ model: 2~ = 7r - p. 
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